

REDES PRIVADAS LTE/5G PARA INDÚSTRIA 4.0:

CONECTIVIDADE CRÍTICA E APLICAÇÕES

AVISO IMPORTANTE

O conteúdo técnico da palestra é de responsabilidade da empresa palestrante.

Fique à vontade para baixar o arquivo em PDF e se atualizar com as novas tecnologias apresentadas nesta edição.

NÃO É PERMITIDO COPIAR AS INFORMAÇÕES E IMAGENS E REPRODUZIR SEM A AUTORIZAÇÃO DA EMPRESA.

Qualquer dúvida em relação ao conteúdo apresentado, você pode entrar em contato direto com o palestrante.

DEFINIÇÃO

Uma rede móvel privada utiliza tecnologias 3GPP (4G-5G) para criar uma rede dedicada com conectividade unificada, serviços otimizados para casos de uso específicos e um meio seguro de comunicação dentro de uma área concreta.

A caracterização do tráfego por dispositivos, casos de uso e definição das zonas de atividade permitem projetar uma rede sob medida para cada setor/empresa.

NPN: Redes Não Públicas (3GPP)

PMN: Private Mobile Networks (GSA)

PONTOS PRINCIPAIS

COBERTURA

CONFIABILIDADE

DESEMPENHO

EFICIÊNCIA

CONTROLE

SEGURANÇA

Indústria 4.0

Missão crítica

Setor Produtivo

Mineração

Serviços públicos

Centros de Inovação

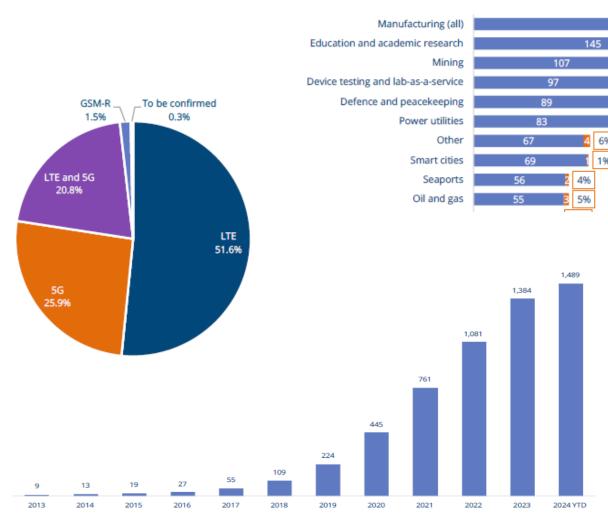
VANTAGENS PARA A INDÚSTRIA – 3GPP X OUTROS

Redução do cabeamento

Recursos dedicados

Mobilidade sem interrupções

Alocação eficiente de recursos


Redução de elementos de rádio

Proteção de dados

ESTADO DA ARTE

AUMENTO NA IMPLEMENTAÇÃO DE REDES PRIVADAS.

Added in 2Q24

% change in quarterly net additions

4 3%

5 5%


2%

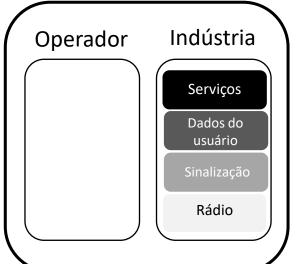
- ✓ FATOR-CHAVE: A REGULAMENTAÇÃO do ESPECTRO DEDICADO para a Indústria (já possível em 80 países).
- ✓ SETORES que impulsionam: Manufatura, Mineração, Energia, Serviços Públicos.
- ✓ LTE ainda é dominante (51,6% apenas LTE), especialmente em mineração e serviços públicos.
- ✓ As implantações 5G SA são principalmente pilotos: falta maturidade na tecnologia e o ecossistema de dispositivos industriais é reduzido.

ESPECTRO ESPECÍFICO PARA USO PRIVADO

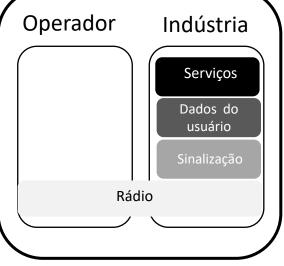
ESPANHA	B40 (2370-2390 MHz) N258 (24,25-27,5 GHz)
FRANÇA	B38 (2575-2615 MNz) N77 (3,8-4,2 GHz) N258 (26,5-27,5 GHz)
ALEMANHA	B42 (3,4-3,6 GHz, 100 MHz) N78 (100 MHz, 3,7-3,8 GHz) N258 (24,25-27,5 GHz)
SUÉCIA	B3 (1,8 GHz, 5+5 MHz) N78 (3720-3800 MHz) N258 (24,25-25,1 GHz)
FINLÂNDIA	B40 (2300-2320 MHz) N258 (24,25-25,1 GHz)
NORUEGA	N77 (3,8-4,2 GHz)
DINAMARCA	N77 (3,8-4,2 GHz) N257
PAÍSES BAIXOS	N78 (3410-34510 MHz) N77 (3750-3800 MHz) B40 (LSA, 2,3-2,4 GHz)

^{* 450}Alliance, promovendo o uso de B31,B72 (450 MHz), especialmente para aplicações de serviços públicos e IoT

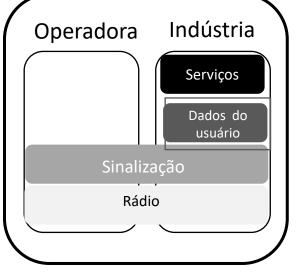
DESAFIOS DAS REDES PRIVADAS

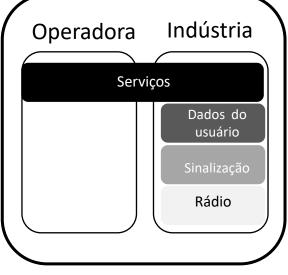


MODELOS DE IMPLEMENTAÇÃO


REDE DEDICADA

REDE HÍBRIDA


REDE PÚBLICA


AUTÓNOMO (NO LOCAL)

HÍBRIDO: RAN COMPARTILHADA

HÍBRIDO: RAN E SINALIZAÇÃO COMPARTILHADAS

VIRTUAL

AUTO SERVIÇO

OPERADOR PÚBLICO

TECNOLOGIAS

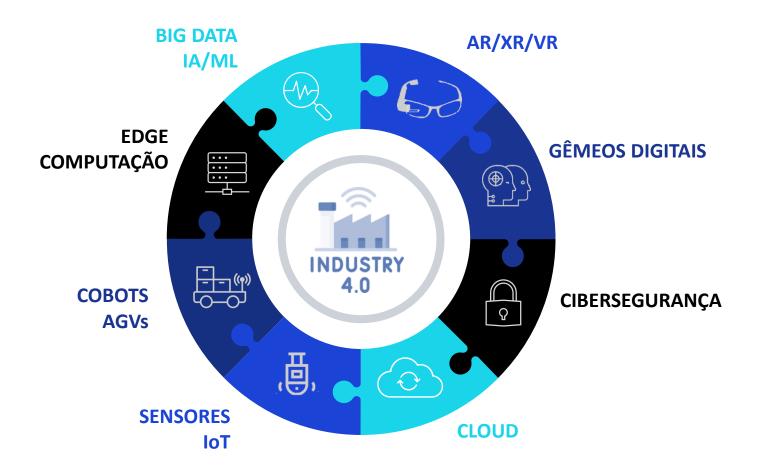
4G

- Maturidade tecnológica
- Maior gama de dispositivos suportados
- Largura de banda regulada adequada
- Bandas baixas/médias adequadas para implantação em ambientes externos

5G

- Funcionalidades 5G SA em desenvolvimento
- Dispositivos para uso industrial em desenvolvimento
- Espectro para uso privado menos acessível (atualmente)
- Maior capacidade e menor latência → novos casos de uso
- Bandas médias/altas adequadas para implantação em interiores

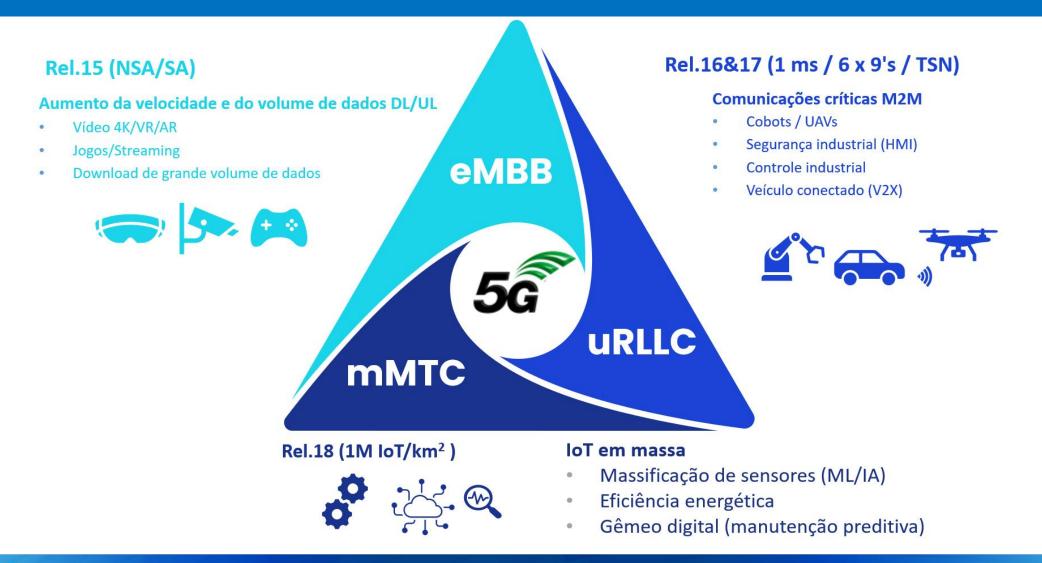
4G ou 5G?



NOVOS FACILITADORES: INDÚSTRIA 4.0

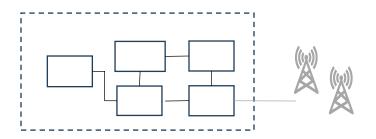
INDÚSTRIA 4.0

ULTRA CONECTIVIDADE

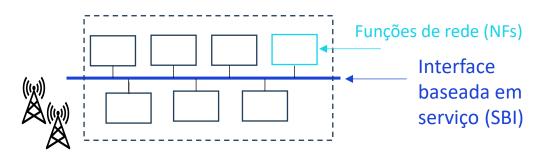

- Pessoas
- ✓ ativos
- ✓ produtos
- ✓ processos

A conectividade sem fio é um fator fundamental.

80% DAS APLICAÇÕES 5G ESTÃO FOCADAS NA INDÚSTRIA.



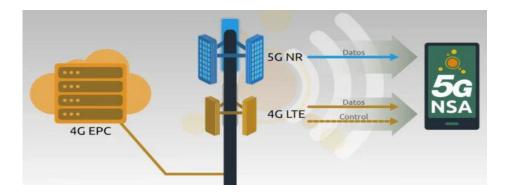
5G: PADRONIZAÇÃO



5G: NOVO CORE SBA - (Service-Based Architecture)

Pré-5G

- Núcleo de rede monolítico
- Baseado em blocos funcionais
- Interfaces dedicadas


A partir do 5G

- ✓ Arquitetura baseada em serviços
- ✓ Virtualização
- ✓ Nativo da nuvem
- ✓ Interfaces abertas
- ✓ Compatibilidade futura

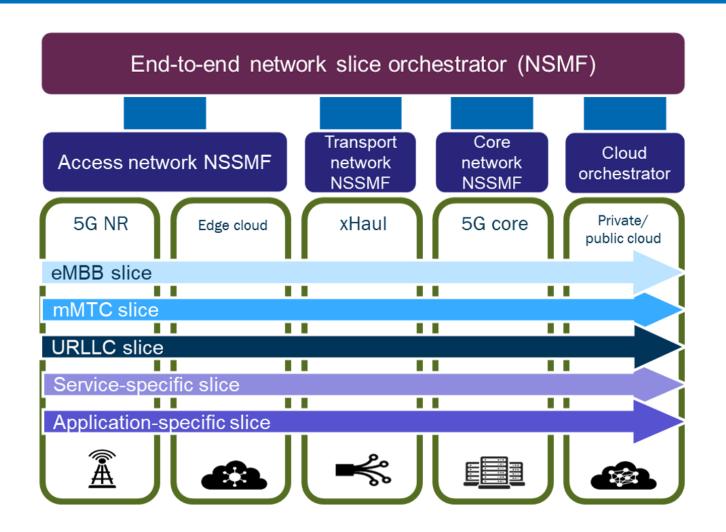
COMPUTAÇÃO DE BORDO CORE DESCENTRALIZADO

5G: TOPOLOGIAS

5G NSA (Non Standalone): Utiliza uma combinação da arquitetura 4G LTE existente com uma RAN 5G. Cria uma rede 5G com infraestrutura 4G usando conectividade dupla. Limitação funcional.

5G SA (Standalone): Cloud Native Core e NR (gNB):

5G REAL para INDÚSTRIA 4.0



5G DSS O compartilhamento dinâmico de espectro (Dynamic Spectrum Sharing) é outro método para implantar o 5G com a tecnologia 4G. O 4G LTE e o 5G NR podem coexistir na mesma faixa de frequência.

5G: SEGMENTAÇÃO DE REDE (network slicing)

NETWORK SLICING

Partição lógica da rede de ponta a ponta (Slice) com características específicas de desempenho e latência da rede para atender a um caso de uso específico.

REDES PRIVADAS 5G: IMPULSO PARA A INDÚSTRIA 4.0

INDÚSTRIA 4.0

DESAFIOS

FLEXIBILIDADE

SUSTENTABILIDADE

RASTREABILIDADE

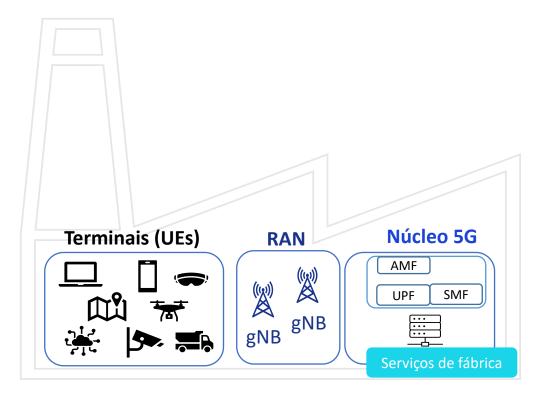
EFICIÊNCIA

OPORTUNIDADES

REDUÇÃO DE CUSTOS

MELHORIA DA QUALIDADE

POTENCIALIZAÇÃO DA INOVAÇÃO


A SOLUÇÃO: 5G SA PRIVADO

Equilíbrio ideal entre desempenho e custo para evoluir para novos casos de uso da Indústria 4.0.

	Mobilidade	Taxa UL	Latência	QoS	Segurança	Custo
Fibra						
WiFi						
Operadora						
PLTE						
P5G						

REDE 5G PRIVADA = 5G E COMPUTAÇÃO DE BORDO

5G Core DEDICADO & ON PREMISE

Edge: Baixa Latência

5G: maior capacidade (especialmente UL)

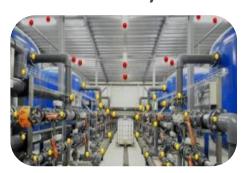
CASOS DE USO INDÚSTRIA 4.0


AGVs
Veículo Guiado Automaticamente

Gêmeo Digital (Digital Twin)

Inspeção de Qualidade. Manutenção Preditiva.

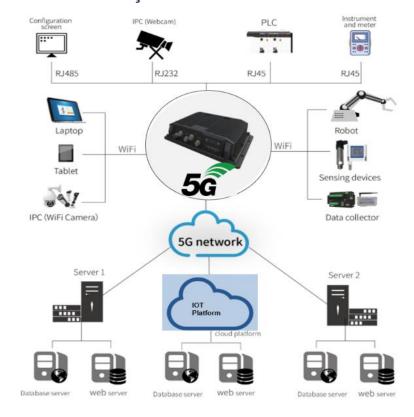
Vídeo (vigilância, visão artificial)


Cobots / Robôs colaborativos

AR/VR. Monitoramento Remoto

Dados / Computação de Borda / IA

Drones/UAVs


FÁBRICA INTELIGENTE

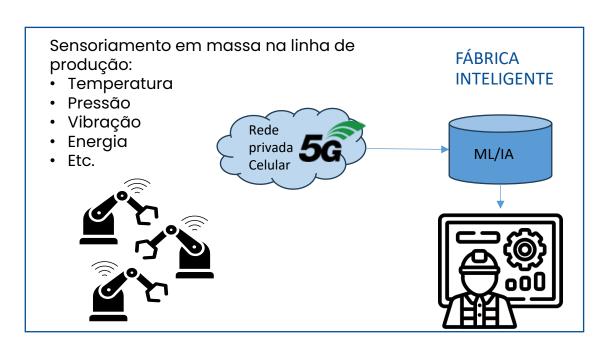
FÁBRICA INTELIGENTE

Os ativos ou equipamentos são conectados a CPEs (roteadores sem fio) industriais para monitorar em detalhes e em tempo real os processos de produção. O CPE encapsula esses dados em um protocolo industrial para transmiti-los através da rede 5G ao centro de monitoramento, onde é realizada a análise e transformação dos dados.

MANUTENÇÃO PREDITIVA

A conectividade continua sendo uma barreira crítica para obter o máximo potencial do conceito de Manufatura Inteligente. Graças ao 5G e suas características de gerenciamento massivo de dados com baixa latência, já existe uma alternativa confiável.

Objetivo: Minimizar as paradas na linha de produção, antecipando as avarias e otimizando as ações de manutenção.


HOJE

Avaria: Parada na produção

Planejamento do pessoal de manutenção

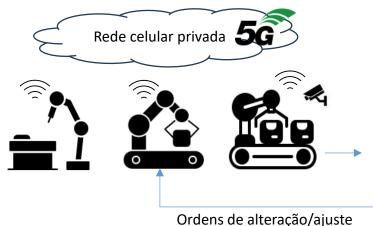
Detecção do motivo da avaria

Trabalhos de reparo

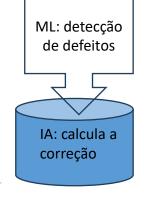
CONTROLE DE QUALIDADE

Estima-se que as linhas de produção de alta velocidade funcionem com apenas 83% de eficiência devido ao tempo que decorre entre a deteção de defeitos e a sua correção. A comunicação sem fios permite dotar a linha de maior flexibilidade.

Objetivo: Melhorar a eficiência da produção realizando alterações nos processos em tempo real após a detecção de falhas.

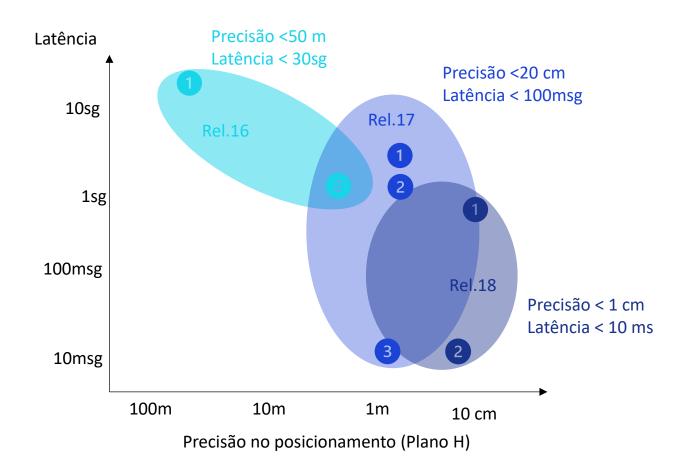

Uma máquina produz com defeitos

Controle de qualidade


Detecção de defeitos

Ordem de revisão da linha de produção

A supervisão e o controle de qualidade podem resolver esses problemas analisando e comunicando os dados das linhas de produção e realizando alterações nos processos em tempo real.


FÁBRICA INTELIGENTE

LOCALIZAÇÃO EM INTERIORES

Posicionamento e casos de uso 5G e Indústria 4.0

- 1 Casos padrão (50 m, 30 s)
- Posicionamento comercial interno (3 m, 1 s)
- 1 Automação de processos (1 m, 2 s)
- Painéis de controle móveis (1 m, 1 s)
- 3 XR (1 m, 15 ms)
- 1 Armazém logístico (20 cm, 1 s)
- Rastreamento de ativos (20 cm, 10 msg)

IMPLEMENTAÇÃO DE REDE PRIVADA 5G

Como abordar a implantação de uma rede privada? Como desenvolver novos casos de uso?

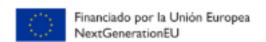
- Análise de requisitos por caso de uso
- Caracterização do tráfego
- Estático ou móvel
- Cenário; interno/externo
- Opções de implantação (banda, fator de forma gNB)
- UEs (EndPoints)
- Integração com aplicações em serviço

- Projeto de RF
- Arquitetura de integração
- Estrutura de cibersegurança
- Prova de conceito em ambiente controlado
- Implantação em pequena escala

- Conclusões
- Caso de negócios
- Opções de implantação escalonada

ESTUDO DE CASO

P&D+i. PROJETO 15.G



Proyecto "INDUSTRY5.G - Desarrollo de conectividad industrial y aplicaciones sobre 5G para la gestión virtual de operaciones en planta del sector de automoción"

Nº Expediente: TSI-065100-2023-1

Ha sido subvencionado por la Convocatoria de ayudas publicada por el MINISTERIO DE ASUNTOS ECONÓMICOS Y TRANSFORMACIÓN DIGITAL,

del Programa UNICO SECTORIAL 5G 2023 que está financiado por el Fondo de Recuperación de la Unión Europea - NextGenerationEU

O desafio >

Na sua visão da fábrica do futuro, a sensorização em massa é essencial para uma automação inteligente dos processos com o objetivo de:

- melhorar a eficiência (FÁBRICA INTELIGENTE).
- melhorar a flexibilidade (FLEXIBLE MANUFACTURING)
- criar aplicações de rastreabilidade virtual (Gêmeo Digital, Fábrica Virtual) que forneçam dados em tempo real para gerenciar a previsão da demanda.

O 5G, com foco na indústria, oferece altas taxas de tráfego, latência ultrabaixa e permite a conexão em massa de dispositivos.

15.G

A solução >

- Rede 5G privada e autônoma
- Cartões SIM privados
- Dados dentro do perímetro da GESTAMP.

OBRIGADO!

JOÃO VICTOR BISSOLI

GERENTE DE PRÉ-VENDAS TELTRONIC

JOAO.BISSOLI@TELTRONIC.COM.BR 11 98758-8934

